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Abstract 

Closed-form expressions for three-beam dynamical 
transmission electron diffraction are compared. These 
are used as a guide to determine the best experimental 
conditions for the determination of structure-factor 
phases by convergent-beam electron diffraction in the 
general non-systematic case. The validity domains of 
Kambe's [J. Phys. Soc. Jpn (1957), 12, 1-13] 'strong 
coupling' approximation and Bethe's [Ann. Phys. 
(Leipzig) (1928), 87, 55-129] second approximation 
are compared, and these approximations reconciled. 
A comparison of many-beam calculations with 
experimental non-systematic CBED patterns is used 
to determine a three-phase invariant for CdS with an 
accuracy of +5 ° in the electron structure-factor phase. 
If it is assumed that two of the phases are known 
exactly, the error in the third (00~) X-ray structure- 
factor phase would be +0.75 ° . The accuracy of the 
method for determining phases, atomic position 
parameters and bonding charge distributions is 
discussed. 

0108-7673/89/120839-13503.00 

I. Introduction 

In the 60 years which have passed since the discovery 
of the diffraction of electrons by crystals there have 
been many attempts to extract crystal structure and 
bonding information from electron diffraction pat- 
terns [for a review, see Cowley (1981)]. Unlike X- 
rays, except for special cases, the much stronger inter- 
action of electrons with matter renders the intensity 
of the multiply scattered electron beams very sensitive 
to the phases of crystal structure factors. The two- 
beam dynamical theory, however, does not preserve 
structure-factor phase information. In his classic 
study of three-beam dynamical electron diffraction, 
K. Kambe showed that the dynamical intensity 
depends on the sum of the phases of the three struc- 
ture factors involved in the interaction, which is called 
the three-phase structure invariant (Kambe, 1957). 
Fourteen years later it was shown for the same non- 
systematic three-beam case that a degeneracy point 
exists at which the intensity is zero for centrosym- 
metric crystals (Gj0nnes & H0ier, 1971). The position 
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840 THREE-BEAM AND MANY-BEAM THEORY IN ELECTRON DIFFRACTION 

of this point indicates immediately whether the three- 
phase structure invariant sums to 0 or 7r. Methods of 
determining both amplitudes and phases in cen- 
trosymmetric crystals have been described, which 
depend on finding lines in a three-beam pattern along 

which the intensity expression reduces to two-beam 
form (Hurley & Moodie, 1980). The application of 
similar three-beam effects in X-ray crystallography 
has been reviewed recently (Chang, 1987). 

Work on the general phase problem in electron 
diffraction has a long history (Fues, 1949; Miyake & 
Uyeda, 1955; Kambe, 1957). For non-centrosym- 
metric (acentric) crystals, however, detailed theoreti- 
cal work has only recently begun (Marthinsen & 
H~ier, 1986; Bird, James & Preston, 1987; 
Marthinsen, Matsuhata, Hefier & Gjc~nnes, 1988. A 
very few applications to transmission electron diffrac- 
tion (Hefier, Zuo, Marthinsen & Spence, 1988; Zuo, 
Spence & H~ier, 1989) and channelling (Marthinsen 
& Hcfier, 1988) have also appeared. 

Since the theory of dynamical electron diffraction 
by crystals has been well understood for many years 
[see Humphreys (1979) for a review], and efficient 
algorithms exist for its computer implementation, it 
is perhaps surprising that no general methods for 
crystal structure determination by electron diffraction 
currently exist. In addition to 'solving' the phase 
problem inherent in all diffraction problems, conver- 
gent-beam electron microdiffraction (CBED) also 
allows the quantitative recording of single-crystal pat- 
terns from fine-grained polycrystalline and multi- 
phase samples, since a focused electron probe only 
a few nanometres in diameter can be used on modern 
electron microscopes. This greatly expands the range 
of real materials, rather than synthetic analogues, 
which can be studied. The development of electron 
microscopes with higher vacuum (and thus reduced 
contamination), improved beam-current stability for 
longer recording times, and reduced aberrations have 
all contributed to these advances. The use of cooled 
charge-coupled device parallel detection arrays with 
large dynamic range also assists quantitative work 
(Spence & Zuo, 1988). Finally, the ability to form 
high-resolution electron microscope images of the 
region used to form the diffraction pattern allows 
regions to be sought for analysis which are free of 
line or planar defects, strain and chemical 
inhomogeneities. 

The reasons for this lack of progress in quantitative 
electron diffraction, despite its apparent promise, are 
not difficult to find. The essential problem is to find 
a strategy or systematic procedure for the analysis of 
a crystal of unknown structure. As a contribution to 
the development of such methods, in this paper we 
consider both approximate analytical methods, and 
full dynamical calculations in acentric structures in 
general, and application to a particular structure with 
a single positional parameter. So far, refinement by 

direct dynamical computation and least-squares 
many-parameter fitting has not proved a realistic 
possibility. For a typical small-unit-cell crystal, a 50- 
beam dynamical Bloch-wave calculation performed 
on a VAX750 takes about 1 min for each plane-wave 
component of the incident wave packet, for a single 
set of refinement parameters (Zuo, Spence & 
O'Keeffe, 1988). These parameters include the elec- 
tron structure factors Vg (or atomic position param- 
eters u,), absorption coefficients, sample thickness, 
accelerating voltage and Debye-Waller factors. Most 
of the time is occupied in diagonalizing a complex 
non-Hermitian matrix. Computing times for the 
multislice method are not greatly different. No 
angular perturbation theory has yet been produced 
to speed these calculations by relating calculations 
for slightly different incident directions. Since 
thousands of points are required to simulate a general 
two-dimensional zero-order Laue zone (ZOLZ) pat- 
tern for each set of refinement parameters, we see 
that the direct matching of experimental and com- 
puted whole patterns is not practical at present. This 
situation is now changing rapidly with advances in 
the new supercomputers. 

For particular cases, however, some impressive suc- 
cesses have been achieved. The most accurate value 
for the 200 reflection in GaAs has been obtained by 
the CBED method (Zuo, Spence & O'Keeffe, 1988). 
Bonding effects have been measured in several crys- 
tals of known structure (Voss, Lehmpfuhl & Smith, 
1980; Goodman, 1976; Smart & Humphreys, 1978; 
Shishido & Tanaka, 1976). The critical voltage 
method has also been used to give accurate structure 
factors in many cases [see Fox & Fisher (1988) and 
Sellar, Imeson & Humphreys (1980)], while the more 
versatile but somewhat less accurate intersecting 
Kikuchi line method has proven useful for small 
crystals which are difficult to study by other methods 
(H0ier & Anderson, 1974; Taft0 & Gj0nnes, 1985; 
Matsuhata, Tomokiyo, Watanabe & Eguchi, 1984). 
The structure of an unknown microphase has even 
been solved from CBED intensity data (Vincent, Bird 
& Steeds, 1984). 

Since whole-pattern matching is not feasible at 
present, the question arises as to which portions of 
the CBED pattern are most sensitive to changes in 
atomic position parameters and ionicity, and which 
choice of specimen thickness gives the greatest sensi- 
tivity. For acentric crystals, an expression for the 
minimum dispersion surface gap has been given 
(Marthinsen, Matsuhata, H0ier & Gj0nnes, 1988), 
and the sensitivity of the corresponding features in 
CBED patterns to the three-phase invariant has been 
discussed. Our experience with numerical simulations 
also suggests some answers to these questions. The 
purpose of this paper then is to compare the various 
three-beam approximations for acentric crystals, and 
to use them to determine the accuracy with which 
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position parameters can be extracted from experi- 
mental data. Many-beam calculations for 'three- 
beam' orientations are also reported, concentrating 
on the degeneracy point which is most sensitive to 
structure-factor phase. In this way we aim to develop 
a strategy for quantitative electron crystallography. 
An application to phase determination in CdS is also 
given, and the accuracy of the method assessed. Posi- 
tion-parameter determination in CdS is briefly dis- 
cussed. 

Techniques for reducing many-beam cases in 
orientations of high symmetry to two- or three-beam 
form have been described in the literature (e.g. Kogiso 
& Takahashi, 1977). These 'beam reduction' methods 
can only supply data along lines of symmetry in each 
disc, and are therefore not useful for our purposes. 

We first note that the phase of the electron 'structure 
factor' Vg (or Ug) is not equal to that of the corre- 
sponding X-ray structure factor FX(s), and no simple 
relation between them is found in the general case. 
They are related by the Motte-Bethe formula, which 
gives, for crystal atoms of atomic number Zi and 
atomic scattering factor f~(s) 

Vg = (1.1459123/~) 

X~ {[Zi-fX(s)]/s2}exp(-2"n'ig.ri). (1) 
i 

However, the phase of the X-ray structure factor is 
determined by 

Fg = ~,f~[(s) exp (-27rig.r i ) .  
i 

Here s = (sin 0)/A, with A relativistically corrected, 
and 0 the ]3ragg angle, fX(s) is dimensionless, Vg is 
given in volts and the sum is over a unit cell of volume 

(/~3). The quantities Ug (in A, -2) used in the 
dynamical theory which follows are given by 

Ug= 2mle[ Vg/ h 2. (2) 

Since m is relativistically corrected, the amplitude 
but not the phase of Ug depends on accelerating 
voltage. In acentric crystals without absorption cor- 
rections Ug= U*g. The sign convention adopted 
above and throughout this paper is consistent with 
an incident plane wave of the form exp (+27rik0.r) 
(Saxton, O'Keeffe, Cockayne & Wilkens, 1983). 
Equation (1) expresses Poisson's equation in the 
Fourier domain. Thus, for small Bragg angles 0, small 
changes in the Fourier coefficients of electronic 
charge density Fg have a large effect on Vg, the 
coefficients of potential (Cowley, 1953). 

We devote the next three theory sections to sum- 
maries and development of the current state of knowl- 
edge of general three-beam solutions and approxima- 
tions. We then discuss, in the light of these results, 
the choice of experimental conditions which renders 
the diffracted intensities most sensitive to crystal 
structure and bonding. Since we are concerned with 

elastic scattering, we do not make the independent- 
Bloch-wave approximation which is appropriate for 
inelastic scattering, or assume that the contrast 
(width) of features in the Kikuchi lines is proportional 
to the width of the gap at the dispersion surface 
(Gj0nnes & HOier, 1971). The final section applies 
these ideas to the case of the one-parameter structure 
CdS in order to assess the error in a measurement of 
this parameter and phase by electron diffraction. 

2. Exact solution for centrosymmetric crystals 

The general expression for the total wave amplitude 
inside a thin crystal of thickness t traversed by a 
collimated kilovolt electron beam in the Bloch-wave 
formulation of dynamical theory is (Humphreys, 
1979) 

gr(r, K,) 

=~ ai~, Cgexp(27riyiz) exp[27ri(K+g).r]. (3) 
i g 

Here y~ are the eigenvalues of the dispersion equation 
(5) below and Kt is the tangential component of K. K 
is defined in (7), z is taken parallel to the beam 
direction and normal to the surface, and the Cg are 
eigenvector elements. Boundary conditions appropri- 
ate to a thin parallel-sided slab of crystal give ai-- 
C~*, and we make the projection approximation 
[neglect of reflections in higher-order Laue zones 
(HOLZ)]. We assume that the incident-beam direc- 
tion is close to the surface-normal direction. In the 
absence of absorption, the amplitude of a particular 
Bragg beam g at the exit surface where z = t is 

t~g exp [27ri(K+g).r]  ~ r~i,r~ = ,--o ,--g exp (27riTit). (4) 
i 

The three-beam dispersion equation for beams 0, h 
and g which results from solving the Schr/Sdinger 
equation using Bloch waves is  ]i ol [co 1 Ug 2KSg Ug-h Cg =2Ky Cg . (5) 

Uh Uh-g 2 KSh Ch Ch 

The excitation error Sg for reflection g is defined by 

21KlSg = - 2Kt . g -  g 2 (6) 

and is positive for reciprocal-lattice points inside the 
Ewald sphere. We define the Laue circle as the inter- 
section of the Ewald sphere with the plane of 
reciprocal-lattice points excited (the ZOLZ). Here 
Kt(Kx, Ky) is a vector drawn from the centre of the 
Laue circle to the origin of reciprocal space. It is the 
component of K in the zero-order Laue zone. The 
Bragg condition is satisfied if a reciprocal-lattice point 
falls on the Laue circle. We now consider the 
geometry of CBED patterns as they appear on film, 
and the relationship between distances on film and 
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changes in K, and the excitation errors. In practice, 
distances on the film X are related to reciprocal-space 
distances g by 

X = LgA 

where L is the electron microscope camera length. 
For the remainder of this discussion, however, we 
take L = 1/A for clarity. We consider first the three- 
beam case, from which other cases may readily be 
derived. Fig. l ( a )  shows this orientation, with, for 
simplicity, the centres A and B of the CBED discs g 
and h at the exact Bragg condition, and therefore on 

(ooo~ 

(a) 

. . . . . .  o 

7 1 ° , ,  / ; I " ,oool 
I K x 

Sg = S h KLhg 

(b) 

Fig. 1. (a) Two different 'point' electron diffraction patterns, OAB 
and O'CD, are shown within the CBED discs 0, g and h. Their 
Laue circles are marked LS! and LS2, respectively. The zone 
axis occurs at M, and the Bragg condition is satisfied at A and 
B. Excitation errors are positive for points C and D which lie 
inside the Ewald sphere. (b) General form of a three-beam 
CBED pattern. Kikuchi lines KLh and KLg (along which the 
excitation errors S, and Sg are zero) are shown. The intensity 
distribution has extrema on the hyperbolae where S+ = 0 and 
S_ = 0 are shown. The intensity approaches two-beam form at 
A and A' and fades towards B and B'. For the CdS example, 
g = 4]2, h = 414 and h - g  = 002. The position of the minimum is 
s h o w n  for  ~ = 0. 

the Laue circle. At A, Sg = 0 while, at B, S, = 0. The 
perpendicular bisectors of OA, AB and OB therefore 
meet at the centre M of the Laue circle LS1 shown. 
This defines K, as the vector from the centre of LS1 
to the centre O of the (000) disc. The centre of LS1 
can be identified as the zone axis from the Kikuchi 
line pattern. 

We may think of a CBED pattern as a set of 
independent point diffraction patterns, laid side by 
side. Every point in the incoherently filled illumina- 
tion aperture gives rise at the sample to an incident 
plane wave defined by IK I and K,. The direct (forward- 
scattered) beam which results is focused to a point 
in the (000) CBED disc. There is, however, an inver- 
sion symmetry between points on the electron source 
and the corresponding point in the central disc. Thus, 
if we imagine Fig. l (b)  to be illuminated from above, 
the choice of a new source point slightly to the right 
of O at -AK,  actually produces a point of intensity 
at O', where O O ' =  A K, as shown. 

The point O' may now be taken as the new origin 
of a point diffraction pattern, whose conjugate points 
C and D in the g and h CBED discs differ by 
reciprocal-lattice vectors g and h. If, however, the 
change in diffraction conditions (rotation of the 
Ewald sphere) due to AK, were referred to the original 
origin at O, this would move the centre of the Laue 
circle from M to M'.  This displacement is exactly 
cancelled by the origin shift from O to O' due to the 
inversion mentioned above. We conclude that the 
centre of the Laue circle remains fixed in CBED 
patterns. Laue circles are concentric on experimental 
CBED patterns. Thus Kt may be measured from this 
fixed centre (the zone axis at M in Fig. 1) to any 
required point in the central disc. This point then 
defines an incident-beam direction, which makes an 
angle sin -~ (KJ[K[) with the normal to the plane of 
reciprocal-lattice vectors excited. Conjugate points, 
differing by reciprocal-lattice vectors, are thereby also 
defined in all CBED discs, with their associated exci- 
tation errors given by (6). In a two-dimensional pat- 
tern it is necessary to identify two Bragg conditions 
to find K,. This is done using the Kikuchi lines. We 
may therefore think of the CBED pattern as a function 
of K,, which originates in the centre of the triangle 
OAB shown and extends to a point of interest in the 
central disc. 

Fig. l (b)  shows the general form of the contrast 
seen in three-beam patterns for a range of incident 
plane waves. The excitation errors Sg and S, are zero 
along the Kikuchi lines KLg and KLh respectively in 
Fig. l(b).  For convenience in this paper we plot 
all the computed CBED patterns as functions of Kx 
and K~. 

The mean electron wave vector inside the crystal is 

]KI 2=/do+  2rnle]E/h 2 (7) 

with E the accelerating voltage. 
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For crystals with a centre o f  symmetry all the U s are 
real (positive or negative). For this case an exact 
solution for the yi in (5) was obtained at the 
degeneracy point by Gj0nnes & H0ier (1971), who 
derived the following expression for the excitation 
errors at which the gap Ay  between two dispersion 
surface branches is zero: 

2 KSg= [ Us ( 2 _ Us_ h U 2 ) ] / U h U g _  h (8) 

and 

2KSh [Uh( 2 = G _ h -  V2)] /GG_h.  (9) 
Solutions for the Cg at the degeneracy point have 

also been obtained in unpublished work by J. Gj0n- 
nes, and by Hurley & Moodie (1980) along lines 
through the degeneracy point parallel to S s = 0 and 
Sh=0. The general solution of (5) may also be 
obtained. This lengthy and complicated expression 
provides little insight into the optimum choice of 
experimental conditions. We therefore now first con- 
sider two approximations which have proven useful, 
and then summarize the general features of three- 
beam patterns. The first of these (due to Bethe) uses 
plane waves for the asymptotic form of the wave field, 
while the second (due to Kambe) uses Bloch waves. 

3. The second Bethe approximation for 
non-centrosymmetric crystals and its validity domain 

Using a perturbation series, Bethe (1928) has shown 
how the effects of beams other than those included 
in the two-beam theory may be incorporated using 
modified effective potentials U en. The geometry is 
shown in Fig. l(b). This corresponds to the case of 
the h=414  and g=412  reflections in the non- 
centrosymmetric CdS structure to be discussed later. 
We take a primary (strong) beam h and a weaker 
coupled beam g. Fig. 1 illustrates this case if beam h 
is near its Bragg condition along the line AA'  or KLh 
in Fig. l(b).  In this first Bethe approximation, with 
Ug # U_g for acentric crystals, the two-beam disper- 
sion equation becomes 

[ - 2 K T -  Ull Uff  ~ I = 0 ,  (10) 
U f  - K y  + 2KSh -- U22 

where 

U~," 

u~, ~ 

and 

= U - h - -  UI2 = U - h -  E ( U - g U g - h ) / 2 K S s  
g#O,h 

= V h - - U 2 1 = U h  - E ( U s U h - s ) / 2 K S s  (11) 
g#O,h 

U, , = ~, ( U_g Ug) / 2 KSg 
g#O,h 

U22 = Y', ( Un-s Us-h)/WKS,. 
g~O,h 

(12) 

The expression for the intensity in a many-beam 

CBED pattern in a non-centrosymmetric crystal can 
then be put into two-beam form by defining an 
effective eigenvalue 

2K3 ,e~ = 2KT + Ull 

and an effective excitation error 

2 KS~, fr = 2 K S  h + U,, -- U22. (13) 

We then obtain a dispersion matrix 

I - 2 K y ~ U~, er 
u~f f _2KT~a + 2 K s f f  f =0 .  (14) 

The two-beam expression for the diffracted intensity 
is then 

ih=[- ,efr- ,ea • 2 Uh Oh Sln (~rtay~n)]/K2(Ayea) 2 (15) 

where A T is the difference in the roots of (10). For 
the particular case of three beams this is given by 

(2KATetr) 2 = [2KSh + ([ Ugl 2 -  [Uh_ s 2)/2KSg] 2 

+4lUh2[l__2lU-gllUh-g I 
]Un 2 K S  s cos 

I gJ~l us_hi = ] 
+ Uh 2(2KSg)2J 

=7"1+1"2. (16) 

The effective structure factor is given by 

u .  u~," Iu~l=-zlU~llu-JIG-"l  ~a = COS tp" 
2 K S  s 

Iusl 2 G _ h  2 
(2KSg) 2 

It,_,, u,,_,,I cos ,e 

+ Uh2KSgsin ~ . (17) 

Here the three-phase structure invariant is defined as 

= ~h "at- ~--g-]- ~g-h (18) 

which is independent of the choice of origin in the 
crystal (the vectors must form a closed loop), q~h is 
the phase of Uh. 

The important approximations of this theory are 
that, for the two Bloch waves which dominate the 
(0, h) two-beam interaction, IGI 1. we also require 
that It is readily shown that these conditions 
require that 

[Ss[>~lUmaxl/2g (19) 

and 

[Shl~lss[  , (20) 

where Uma x is the largest structure factor. In the Bethe 
approximation, plane waves are used as the 
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asymptotic form of the wave field. In Kambe's 
method, Bloch waves are used for the g-h interaction, 
and a plane wave for the direct beam, as asymptotic 
forms. 

Fig. 2(a) shows the domain of validity of this 
approximation as it appears on a convergent-beam 
pattern. 

4. Kambe's strong-coupling approximation 

Solutions to (5) have been obtained by Kambe (1957) 
for the case where beams g and h are strongly coupled, 
i.e. 

IU~hl= IG-d>>IGI or ]Uhl. (21) 

We now derive these solutions in standard notation 
and discuss their domain of validity for the non- 
centrosymmetric case. 

First, take Ug = Uh = 0 SO that (5) becomes 

- 2 K'yCo = 0 

2K(Sg-  T)Cg+ UghCh = 0 (22) 

UhgCg+ 2/< (Sh -- y) Ch = 0. 

This gives 

,yi ~ 0  
(23) 

23, 2,3 = { Sg + Sh + [ (Sg - Sh) 2 + I Ugh/K 12]} I/2 

and 

C~o ' )=1,  ¢ '~ ' )=C~')=0 (24) ~ g  

C~o 2) = O, ¢~2} ~g = cos (/3/2) exp  (iCpgh), 

C{h2) = sin (/3/2) (25) 

C~o3)=0, CCg 3 ) = - s i n  (/3/2), 

C{h 3)= COS (/3/2) exp (-i~Ogh) (26) 

(a) 

(b) 

Fig. 2. (a) The shaded regions represent the validity domains for 
the second Bethe approximation in three-beam patterns [see 
equations (19) and (20)]. (b) The Kambe 'strong coupling' 
approximation holds above and below the dashed lines shown. 

Here ~Dg h is the phase of Ug h and co t /3=  
(Sg-  Sh)K/I Ughl. These results provide the 
asymptotic solutions for Ug ~ 0 and Uh ~ 0, as can 
be seen from a study of the three-beam dispersion 
surface geometry. We therefore use the BIoch waves 
defined by (24)-(26) as basis functions for the sol- 
ution of (5). The wave field inside the crystal is written 
as 

6 ( r ) = ( C o + C + 6 + + C _ 6 _ ) e x p ( 2 7 r i k . r )  (27) 

with k = K+ yz. Here z is into the crystal and positive 
eigenvalues denote dispersion surfaces above the 
sphere of radius IKI. 

6+ = cos (/3/2) exp (i~gh)- exp (27rig.r) 

+s in  (/3/2) exp (27rih.r) (28) 

6-  = - s i n  (/3/2) exp (27rig.r) 

+cos  (/3/2) exp (--icgh) exp (27rih.r). (29) 

Regrouping terms in unity, exp (27rig.r) and 
exp (27rib.r), we find the following relations between 
the eigenvector elements: (Co) 0 0 (Co) 

Cg = exp (i~gh)COS (/3/2) sin ( / 3 /2 )  C+ . 

Ch --sin (/3/2) exp ( -  icgh)COS (/3/2) C_ 

(30) 

Using (30) in (5) we obtain after some manipulation (0 ://!:)(!!) 
U+ 2KS+ = 2Ky  . 

U_ 0 2 K S _ l \  

Here 

(31) 

and 

12KS_I>> 2KIS+I. (37) 
Solutions for this region can then be found, since, by 
a similar argument to that used in §3 [equations (19), 

U÷= Ug cos (/3/2) exp (--i~gh)+ Uhsin(/3/2) (32) 

U _ = - U g s i n  (/3/2)+ Uh COS (/3/2) exp (i~gh) (33) 

S+=½{Sg+ Sh+[Iugh/gl2+(Sg--Sh)q '/2} (34) 

S-=½{Sg+Sh-[Iugh/KI2+(Sg-Sh)2] ' /2} .  (35) 

Setting S+ = 0 or S_ = 0 defines the hyperbola AB or 
A'B'  on which the intensity is maximum. 

Despite the simplification of equation (31), a 
simple analytical solution is still not possible. We 
note, however, that in the region where S+ is small 
the minimum value oflsl is Iughl/g. From (32) and 
(33) the largest value of U+ and U_ is IGI+IGI. 
Hence we have 

12gs_l->lu+l or lu-I (36) 
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(20)], we take C_ = 0. Then (31) becomes 

(0 
U+ 2KS+] C+ C+ ' 

which has the roots 

y~'2=½{S++[$2+ U+/K 211/2}. 

Let cot a = S+K/IN+I. Then 

C(ol) = cos ( a / 2 )  exp (-i~o+) 

and 

Here 

and 

C(o 2)= sin ( a / 2) exp ( -  i~o +) 

Cl+=-s in (a /2 )  and C2+=cos(a/2). 

~0+ = ~Og- ~0g_ h "+ 0 

(38) 

(39) 

tan 0 = t a n  (/3/2)lUh /Ug I sin q, 

x[l+tanl/3/2llUh/U~lcos4,] -1. (40) 

From (30), we have then 

Cg= C+ exp (iq0gh) COS (/3/2) 

and 

Ch~- - C+ sin (/3/2). (41) 

Using the above results and equation (3), we find that 
near the line AB in Fig. l (b)  where S+ is small and 
(36) and (37) are satisfied, 

Ig= qsg~* = (1 + S+K/U+ 2)-1 
x cos 2 (/3/2) sin 2 [ rrt(S 2 +lu+/KI2) 1/21 

(42) 

Ih = ~htiOh* = (1 +IS+K~ U+ 2)-1 
xsin  2 (/3/2) sin2 [~'t(S 2 +]U+/K 2)1/2]. 

(43) 

Similarly, near the line A'B' in Fig. l (b)  where S_ is 
small, 

Ig---- ¢~g@g* = (1 + S_K/U_2)  -l 

xsin  2 (/3/2) sin 2 [Trt(S2__ +IU_/KI2) 1/2] 
(44) 

Ih = @h Crp* = ( 1 + S_K / U_I2) - '  

x cos 2 (/3 /2) sin 2 [ 7rt( S 2_ + [ U _ / K  12) 1/2]. 

(45) 

Fig. (2b) shows the region in which these solutions 
hold, and should be compared with the validity 
domain of the Bethe potential solution shown in 
Fig. 2(a). 

Of the quantities involved in these intensity 
expressions, only I U+12 and I U_I 2 depend on structure- 

factor phases. From (32) and (33) we have 

Iu+12= lUh12 sin2 (/3/2) 
x {[ 1 +lUg~ Uh[ 2 Cot (/3 / 2) COS qt ]2 

+]Ug/Uh] 2 cot2 (/3/2) sin 2 qr} (46) 

I o _ 1 2 -  - Iuhl 2 cos  2 ( / 3 / 2 )  

x {[1 -lUg~ Uh[ 2 tan (/3/2) cos ~]2 

+lUJUhl2tan2(/3/2) sin 2 ~},  (47) 

with ~ again the three-phase invariant [(18)]. 
We now show that these results agree with those 

of the Bethe approximation for small S+ = 0 (on the 
line AB) or small S _ = 0  (on the line A'B'), and 
Isgl>>l&l or lUg_h/gl (Bethe approximation). For 
small S+ 

cot (/3/2)---~ -Iughl /2KSg.  (48) 

Here sin(/3/2) -~ 1, while cos (/3/2)-~ 0. Hence (46) 
and (47) become, in this region, 

2KSg Uh COS gt/2 

+lUgUg-h 
Uh2KSg sin g i l l .  (49) 

Similarly, near S _ = 0  where Isd>>l&l or ISg-dgl, 
tan (/3 / 2) ~-I sghl/2gsh. (50) 

Here sin (/3/2) "- 0 with cos (/3/2) -~ 1. Then 

[( ) Io_12---I001 = 1 -  2gsglogl cos  

Uh Ug-h 2] 
+ 2KSgugSin ~ l  " (51) 

5. General features of three-beam patterns in 
non-centrosymmetric crystals 

The results of the' previous sections may be used to 
draw some qualitative and quantitative conclusions 
about the form of three-beam patterns from non- 
centrosymmetric crystals. Bands of maximum 
intensity might be expected on the lines AB and A'B' 
in Fig. l(b),  along which the effective excitation errors 
S .  or S_ of three-beam theory are zero, respectively. 
In fact, owing to dynamical effects, the intensity is 
modulated as shown schematically in the figure, and 
a gap appears near the crossing of these lines. For 
certain thicknesses (e.g. t < K /2U. /_ ) ,  equations 
(34), (35), (42) and (43) give the locus of the two 
bands as S+--0  and S_ = 0. The distance between 
these bands measured along the line Sg = Sh shown 
may be obtained from the same equations as 
I ug -h l / /< .  
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Equations (42) and (43) also show that, owing to 
the factors cos 2 (/3/2) and sin 2 (/3/2), the intensity of 
beam h falls off as Is~l becomes large, as observed 
experimental ly  (see Figs. 3 and 6). 

These general trends are demonstrated by the two- 
dimensional  three-beam calculations shown in Figs. 
3 for GaAs. 

For t < K/2] U+/_ I the intensity in the CBED pat- 
tern is proport ional  to the effective potential U+/_, 
which has either a m a x i m u m  on A'B' and a m i n i m u m  
on AB, or  the converse, depending  on whether  cos g; 
is less than or greater than zero. [The m i n i m u m  in 
Fig. l (b )  is drawn for ~ =0 . ]  From (42) and (43) the 
positions of  these max ima  and min ima  are given by 

&--(IUg.I/4K c o s  'e ) { lu~ l / Iu ,  l - I % l / l u ,  I 
+ [I u,  I/I u.l - l u,  I/I u,  I)2 + 4 cos 2 v , ] ' ,% (52) 

Along the hyperbolae  the incident beam is con- 
strained to move such that 

S,= Iu,h 2/4K2Sh. (53) 

The upper  sign in (52) gives the maximum.  In a 
centrosymmetric crystal with gt _-0 the m i n i m u m  is 

on the upper  band A'B' at 

s .  = l u , . l l u ,  I/ 2 r l u,l (54) r- and 
sg= l u,hl l u, / 2KI uhI. (55) 

The m a x i m u m  occurs on the band AB where 

& = - -  u,~ lu ,  l /2I , : lv ,  (56) 

and 

s , = - I u , ~ l l u ~ l / 2 r l % l .  (57) 

The signs of all these excitation errors are reversed 
for ~ = r r .  

These results [(54) and (55)] may be compared 
with those of (8) and (9) from §2, which were 
obtained from the full solution. We see that the above 
approximate  expressions for the position of the 
degeneracy are justified if  I u ,  - ,. I -> l u ,  I or I u,.I. 

It has been suggested that the distance between the 
m a x i m u m  and m i n i m u m  intensity may be used to 
measure the three-phase invariant  (Bird, James & 
Preston, 1987). Within the Kambe approximat ion  this 

(I) - 0 ° 1 5  ° 4 5  ° 9 0  ° 

6 0 0  A 

A~ 
B, 

IX 
min ~ 
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, \  
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1ooo A 

X ,  

X 
\ 

\ 

\ 
Fig. 3. The variation of three-beam patterns with thickness and phase. Each column corresponds to the same value of the three-phase 

invariant, while the thickness changes with each row. These are three-beam dynamical calculations for the 175 reflection in GaAs at 
120 kV. The other reflections are 000 and 264. The values U(175)=0.0139, U(264)= 0-0250 and U(1 l l )=  0.0512 were used. The 
figure is related by a vertical mirror plane of reflection to Fig. l(b). 
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distance is, from (52), 
__ ~ , m i n  d = Sh nax o h 

= ( I u g h / 2 K  cos 

×[(I%I/Iuh--IUh/IUglY+4COS 2 (58) 
Distances measured from electron micrographs must, 
however, be rescaled according to (6). 

The three-phase invariant can therefore be found 
using 

Icos u h / l % l )  

x[2 (d2K2 /  Ugh2--1)'/2] -'. (59) 

The positions of the maxima and minima immediately 
indicate the sign of cos ~, which is positive as drawn 
in Fig. l(b).  We note that the positions of the 
maximum and minimum are not symmetrical in Sh 
and Sg. The earlier approximate result (Bird, James 
& Preston, 1987) for d was based on the first terms 
of the Born series in the approximation of weak 
coupling. This result predicts multiple maxima and 
minima, not present in the above dynamical treatment 
or in experimental results. 

To summarize, the following intensity variations 
will be observed in three-beam patterns from cen- 
trosyrnmetric crystals where ~ = 0 or 7r. For gr = 0 
the elastic intensity along A'B'  falls to zero at the 
degeneracy point shown in Fig. l(b) (labelled 
'minimum'). For gr = 7r the zero occurs for opposite 
signs of the excitation errors, i.e. near q. For a non- 
centrosymmetric crystal this zero intensity becomes a 
minimum of intensity. For Kikuchi lines, this occurs 
when A7 (the dispersion surface gap) is a minimum 
since the band of intensity along AB is a projection 
of the position and width of the dispersion surface 
gap (Gj0nnes & Hoier, 1971). The results of § 3 on 
the Bethe approximation can also be used to obtain 
an expression for the position of the minimum. Setting 
T~ = 0 in (16) and using the result in the minimum 
value of T2 with respect to Sg gives 

2 KSg ~-I ugll ug_.l/uh cos 

and 

2KSh-~[ Uh( Ug_,,2-1U bllu lug_,,]cos're (60) 
for the position at which the minimum occurs. For a 
centrosymmetric crystal with ~ = 0 and I Ug-h >>lUg[ 
or IUhl (strong coupling), (60) reduces to (55). The 
condition S+ = S_ = 0 defines the curves A B  and A'B'  
in terms of excitation errors, within the shaded area 
of Fig. 2(a). If the structure-factor amplitudes are 
known, (60) also allows the determination of the 
three-phase invariant ~. A determination of several 
linked phase invariants provides a relationship 
between complex structure factors, and so may be 
used to assist in structure analysis. In other cases two 
of the three phases may be known or zero. For these 

excitation errors [(60)] the minimum dispersion sur- 
face gap width, in the Bethe approximation, is 

A(2KT) -- 2l Un sin g'[. (61) 

The intensity profiles (as a function of Sh) at other 
positions may b e  obtained from (15) along lines 
parallel t o  K L g ,  for which Sg is constant. We note in 
passing that for the study of the inelastic scattering 
responsible for Kikuchi lines, the thickness-depen- 
dent term in equations (15), (42), (43), (44) and (45) 
is neglected in the independent-Bloch-wave approxi- 
mation. This approximation forms the basis of the 
intersecting- Kikuchi-line method. 

6.  A b s o r p t i o n  in t h r e e - b e a m  t h e o r y  

f o r  n o n - c e n t r o s y m m e t r i c  c r y s t a l s  

For reasons of clarity and analytic simplicity, the 
preceding discussion has not considered the effects 
of absorption on the three-beam theory. As in the 
two-beam dynamical theory, absorption terms can be 
included to take account of the depletion of the elastic 
wave field by inelastic processes. Experimentally, we 
observe that the intensity on the upper branch of the 
hyperbola is always slightly less than that on the lower 
branch, an effect which we now show is due to 
absorption. 

In first-order perturbation theory, the corrections 
to the eigenvalues of the dispersion matrix are found 
to be 

. f  t i = , y  i .at_ i q i 

where 
[ [ t  p i  t-,i, Qi. 2Kq i = ~ ~ g - h ' - - h ' - - g  = 

h 

Using the unperturbed eigenvectors of (40) and (41) 
we find the absorption factors to be as follows. For 
the upper branch (S+ small), 

Q ' = -  u ~ , l + l v ~ [  s in  ~ cos ( /3 /2)  cos  0 

+ U~, cos (a/r _ 0) sin a sin (/3/2) 

- Ug-hl sin/3 sin 2 (a /2 )  

Q 2 = _  U~ - l U g  sin a cos (/3/2) cos 0 

- U~ cos ( ~  - 0) sin a sin (/3/2) 

- Ug-h) sin/3 sin ~ (a /2)  

while, on the lower branch (S_ small), 

Q I = _  U~ - l U g  sin a ' c o s  (/3/2) cos 0' 

+ U~, cos (a/r _ 0') sin a '  sin (/3/2) 

+ Ug-hl sin/3 sin 2 (a ' /2)  

Q2= _ lu l l  sin a '  c o s  ( / 3 / 2 )  c o s  0' 

- U~ cos ( ~  - 0') sin a '  sin (/3/2) 

+ U~_ul s i n /3  sin 2 (c~'/2). 
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Here 0 was defined in (40), while cot a ' =  S_K/]U_] 
and 

- c o t  (/3 / 2 ) l Uh Ug[ sin 
tan 0' = 

1 - cot (/3 / 2)1Uh/Ugl cot qt" 

The effect of absorption is to introduce terms 
exp(rrtQ~/K) into the expression for a particular 
beam amplitude [equation (4)]. Thus the two negative 
terms in ] Ug-hl in the expression for Q; on the upper 
branch leads to a decrease of intensity. Here sin (/3/2) 
is always positive. On the lower branch similar posi- 
tive terms lead to an increased intensity, as observed 
experimentally. 

7. Experimental application to CdS 

For the non-centrosymmetric CdS structure, the 
intensity along the hyperbolae may, within the Kambe 
approximation, be expressed using (34), (43), (45), 
(46) and (47) as 

(2KSg) 2 
Ih--lUh_gl2+(2KSg)2sin2 (rctlg~,fr[/K), (62) 

with 
(2gSg) 2 

U~,'] 2 I u.  21Uh_g[ 2 + (2 KSg) 2 

2KSJU.l c o s  

sin gr /  (63) 

With (53), equations (62) and (63) can also be 
expressed entirely in terms of Sh. 

In (62), Sg is negative on the upper hyperbola AB 
and positive on the lower. The prefactor in (62) is 
independent of phase, and accounts for a slow reduc- 
tion in the intensity of I~ near B and B' where Sg = 0. 
The intensity is greatest near A and A'. From (62) 
we see that for thicknesses t = ( n + l / 4 ) ~ h  the 

Uh , and intensity is most sensitive to changes in e, 
hence to gr. Here the slope of the Pendell6sung curve 
is also steepest. The intensity along the hyperbolae 
has either a maximum on the upper hyperbola (Sg < 0) 
and a minimum on the lower (Sg> 0), or the converse, 
depending on whether cos ~ is greater or less than 
zero. The variation of the effective potential U~," with 
excitation error for several values of the three-phase 
invariant is shown in Fig. 4. Values of Ug have been 
taken from International Tables for X-ray Crystal- 
lography (1974). The structure factors for CdS are 
given by 

Fhkt = [fco +fs  exp (27rilu)][exp 2~ri(2h/3 + k/3 ) 

+ exp 2rri(h/3 + 2k/3 + l/2)]. (64) 

Here k -  h = 3n (n an integer) in the [140] ZOLZ. 

Experimentally it is difficult to measure the electron 
intensity along the hyperbolae. Therefore we have 
taken line scans parallel to  KLhg in Fig. 1 (b) at several 
places cutting both hyperbolae, and compared the 
results with full many-beam calculations. In this way 
a value of gr may be refined. It is clear that the most 
sensitive region for such a scan is at the minimum 
shown in Fig. 4. 

Crushed samples of single-crystal hexagonal CdS 
were examined in a Philips EM400T electron micro- 
scope at room temperature. CBED patterns were 
obtained using a probe size of about 100 nm, and 
recorded on film. The processed negatives were read 
into a VAX 750 computer using a charge-coupled 
device (CCD) camera to minimize field distortion. 
Allowance was made for the logarithmic response of 
the film to light, but linear response to electrons. This 
method is quick and convenient and takes advantage 
of the large storage capacity of film. However, the 
resulting patterns include an inelastic background. 
For the systematic orientation, where one- 
dimensional data are used, we have found an energy- 
loss spectrometer useful for recording the elastic 
intensity. The pattern is scanned, under computer 
control, over the spectrometer entrance slit. We have 
also developed a liquid-nitrogen-cooled yttrium 
aluminium garnet (YAG)-CCD detection system 
with large dynamic range for parallel detection on 
the electron microscope (Spence & Zuo, 1988). Using 
this system, which reads two-dimensional data 
directly into a computer, we expect increased 
accuracy in phase determination because of its larger 
dynamic range (14 bits). 

The subtraction of the background due to inelastic 
scattering presents special problems in two- 
dimensional patterns. In the present work the back- 
ground was subtracted as follows. A point diffraction 
pattern taken from the same region used for analysis 
was recorded under identical conditions, and read 
into the computer. The resulting peaks were then 
fitted to the Lorentzian function which describes 
small-angle scattering by electronic excitations, plas- 

u e f f  

h 

i s~ 
-.025 GO .025 

Fig. 4. Variation of the effective potential U~ n (Kambe) with 
excitation error for equal increments in the phase invariant 
between 0 and 90 °. This quantity is related to the intensity in 
three-beam CBED patterns along AB (Sg< 0) and B'A' (Sg> 0) 
(see Fig. 1 b). Asymptotes are [U hi. 
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mons and some phonons .  This was convoluted  with 
a top-hat  funct ion represent ing the inc ident -beam 
divergence (for  the point  pat tern) ,  and  the result 
convoluted with the results of  the many-beam calcula- 
tions. This procedure  avoids the noise-amplif icat ion 
problems well known to be associated with deconvol-  
ution. 

Fig. 5 shows the pat tern used for analysis,  while 
Fig. 6 shows an enlarged view of the (414) C B E D  
disc, and the positions of  two line scans X X '  and 
YY '  taken across it. The results of  the scans are shown 
in Fig. 7. The scan lines run parallel  to KLhg in 
Fig. l (b ) .  The gap in the upper  hyperbola  in Fig. 6 is 
due to an addi t ional  interact ion (the 00(,), which is 
fully included in the m a n y - b e a m  calculat ions.  The 
horizontal  band  of  intensity which runs across the 
bot tom of  the image is modula ted  by per turba t ions  
due to the 00h systematic  line on the left, and to the 
410 reflection on the right. This band  produces  the 
un impor tan t  smaller  peaks  near  X and Y in Fig. 7. 
The two main  peaks in Fig. 6 are identified by the 
arrows in Fig. 7. These peaks  lie on the locus of  the 
three-beam hyperbola ,  which is most  sensitive to 
phase.  The beam direction (Kx, Ky) was accurate ly  
measured  along X X '  and  Y Y '  for use in the compute r  
calculations.  

The many-beam Bloch-wave calculat ions for the 
intensity along X X '  and YY' in Fig. 6 depend  on the 

following parameters ,  which were found as follows: 
(1) The accelerat ing voltage was de te rmined  from an 
analysis of  H O L Z  line positions. (2) Absorp t ion  

Fig. 6. Enlarged view of the 414 CBED disc used for analysis. 
The lines indicate the positions of the intensity profiles shown 
in Fig. 7. Other features are discussed in the text. 

v 

¥ ¥' 
(a) 

Fig. 5. Small-camera-length view of the CBED pattern used to 
determine a three-phase invariant in CdS. The three strong beams 
are indexed. All others carrying appreciable intensity are also 
included in the calculations shown in Fig. 7. 

p 

x x 
(b) 

Fig. 7. (a) Comparison of experimental intensity (crosses) and 
the results of 15-beam dynamical calculations for the intensity 
along the line YY' indicated in Fig. 6 for three values of the 
three-phase invariant. These are 49.6 ° (curve 1), 59.6 ° (curve 2) 
and 89.6 ° (curve 3). The best fit is obtained for g' = 49.6 °. Arrows 
indicate peaks dominated by the three-beam interaction sensitive 
to phase. (b) Similar to (a) but for the line XX' in Fig. 6. In 
this region the intensity is less sensitive to phase. The data were 
normalized at P. 
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coefficients for reflection g were obtained by matching 
the asymmetry in the 000 disc against calculations 
with reflection g at the Bragg angle. We find 
U'(O0=2)/U(002) =0.08±0-005 and U' (006) / (006)= 
0.1. This allows a parametric fit to be made to the 
absorption potential of the form (Voss, Lehmpfuhl 
& Smith, 1980) 

U'g/Ug= - 0 . 1 3 g -  0.03g 2. (65) 

This expression was used to obtain values for the 
other Ug required in the many-beam calculation. 
(3) The specimen thickness was found to be 
86.5 (5)nm from a comparison of 32-beam calcula- 
tions with the 00h systematics - in particular, the 
outer thickness-sensitive fringes of the 00a, disc were 
used. Data were read from film into the computer, 
again using a CCD camera. (4) Debye-Waller factors 
were taken from recent accurate X-ray work 
(Stevenson, Milanko & Barnea, 1984). 

Figs. 7(a) and (b) show a comparison of the experi- 
mental intensity (crosses) and the results of 15-beam 
calculations for two cuts across the hyperbolae. The 
second cut at XX' where the data are relatively 
insensitive to phase was used for normalization. The 
arrows indicate the two peaks dominated by the 
three-beam interaction, which are sensitive to phase. 
Calculations are shown for three values of 
the three-phase invariant. A statistically significant 
difference between theory and experiment resulted 
from a 5 ° change in phase, which we take to be the 
error. Unfortunately the most sensitive region could 
not be used, since it is disturbed by the 410 interaction, 
which causes the gap in Fig. 6. The calculations solve 
the time-independent Schr6dinger equation by the 
eigenvalue (Bloch-wave) method for a 120 kV elec- 
tron traversing a thin slab of parallel-sided non- 
centrosymmetric crystal which may be inclined to the 
beam. Absorption is included. The renormalized 
eigenvector method is used (Lewis, Villagrana & 
Metherell, 1978), and all HOLZ reflections included. 
The Fortran source code has been published (Zuo, 
Gj~nnes & Spence, 1988). 

From Fig_7 we find that the sum of the phases of 
the 414, 412 and 009 electron structure factors Ug 
(dimensions length -2) in hexagonal CdS is 49.6 ± 5 °. 
If it is assumed that two of these phases were known 
exactly, then the error in the third 002 X-ray structure- 
factor phase would be ± 0.75 °. 

8. Discussion and concluding remarks 

We may conclude that: ( 1 ) t h e  three-beam non- 
systematic CBED geometry provides a useful general 
method for obtaining values of the three-phase struc- 
ture invariants. Because in this case we were not able 
to use the most sensitive region of the CBED pattern 
in this work, we are unable to assess its accuracy 
fully. (2) With the assumption that accurate Debye- 

Waller factors are available, the most important limi- 
tation to the accuracy of this method is the uncertainty 
in the estimate of background due to inelastic scatter- 
ing, which has a two-dimensional variation, and the 
possibility of accidental reflections obscuring the 
sensitive region of the pattern. 

Similar information may be obtained from electron 
channelling patterns. These phase invariants may be 
used as starting values for structure refinement by 
other methods, for which they provide useful con- 
straints. 

Our most recent research (Zuo, Spence & H0ier, 
1989) also suggests that, in particular cases, a variant 
of the critical voltage method in the systematic 
geometry may also be used for accurate phase 
measurements. This in turn would also allow the 
refinement of atom positions and measurements of 
bonding charge distributions. For CdS, which is a 
one-parameter structure, it appears possible to deter- 
mine the phase of a two-phase (electron) invariant 
by this method with an accuracy of about 0.9 ° if the 
position parameter is assumed known. The error in 
the corresponding X-ray phase is 0.069 ° . Alterna- 
tively, if an ionicity is assumed, it would be possible 
to determine the dimensionless atomic position 
parameter to within about 0.0005. These effects might 
be disentangled from a series of patterns emphasizing 
different orders. 

The Bethe and Kambe approximations are seen to 
be well suited for interpretive purposes, and for the 
analysis of the various parameter dependences. It 
should be noted, however, that the expressions are 
not able to distinguish between positive and negative 
phase angles. This means that they are well behaved 
in the centrosymmetric case, but should be used with 
care in the non-centrosymmetric case. 

In comparing some of the various methods which 
have been proposed for electron crystallography, our 
experience suggests that the three-beam non- 
systematic method is the most generally useful for 
non-centrosymmetric crystals requiring phase deter- 
mination. However, it requires the handling of two- 
dimensional data sets, and is limited in accuracy by 
the two-dimensional nature of the background which 
must be subtracted. For more accurate work, energy 
filtering is required. The systematic geometry facili- 
tates energy filtering, and any remaining (phonon) 
background may be estimated from scans taken out- 
side the CBED discs, since this background is also 
one-dimensional. It is therefore the preferred method 
for centrosymmetric crystals, in which phases are not 
required. It may also be used for very accurate phase 
determination in acentric crystals in many cases, if 
equation (4) of Zuo, Spence & H0ier (1989) can be 
satisfied. This requires that the minimum in the Bethe 
effective potential be positioned by choice of 
accelerating voltage close to the Bragg condition for 
a second-order reflection. This may not always be 
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possible, but provides a very simple and accurate 
method if it is. The systematic ge6metry also has the 
advantage of  providing many  independent  structure 
factors, unl ike the more accurate critical voltage 
method,  which provides only a relat ionship between 
structure factors. The intersect ing-Kikuchi- l ine 
method can also provide useful approximate  values 
of  structure factors, and is by far the easiest to apply  
since it relies on distance measurements  taken from 
film, rather than  intensi ty measurements .  

This work was carried out during the sabbat ical  
visit of  one of  us (RH, supported by a grant from 
NTNF,  Norway)  to the NSF  Nat ional  Center  for 
High Resolut ion Electron Microscopy at Arizona 
State University. It was supported by NSF grant 
DMR88-13879. We are grateful to Drs R. Gla isher  
and M. O'Keeffe  for helpful  advice. 

Note  added  in proof: The use of eigenvalue per- 
turbat ion theory for absorpt ion in acentric crystals is 
an approximat ion .  See Bird, James & King [Phys. 
Rev. Lett. (1989), 63, 1118]. The sign of  the phase  
triplet may  be de termined as described by Mar th insen  
& H0ier  [Proc. E M S A ,  (1989), p. 484]. 
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Segmented Anisotropic Refinement of Bovine Ribonuclease A by the Application of the 
Rigid-Body TLS Model 
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Abstract  

The anisotropic displacements of selected rigid 
groups in bovine ribonuclease A have been refined 
from X-ray diffraction data by the application of the 

* Present address: Department of Chemistry, University of Sur- 
rey, Guildford GU2 5XH, England. 

t Present address: AFRC Institute of Food Research, Reading 
Laboratory, Shinfield, Reading RG2 9AT, England. 

r igid-body TLS model.  The rigid groups chosen were 
the side chains  of  tyrosine, hist idine and phenyl-  
a lanine and the p lanar  side chains of aspart ic  acid, 
glutamic acid, glutamine,  asparagine and arginine.  
The method has also been appl ied  to the co-crystal- 
lizing active-site sulfate anion. This has enabled  the 
description of  the mot ion of  the above-ment ioned  
side-chain atoms by anisotropic  d isp lacement  ellip- 
soids from a 1.45 ~ refinement.  The hydrophob ic  side 
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